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Definition

Adaptive bitonic sorting is a sorting algorithm suitable
for implementation on EREW parallel architectures.
Similar to bitonic sorting, it is based on merging, which
is recursively applied to obtain a sorted sequence. In
contrast to bitonic sorting, it is data-dependent. Adap-
tive bitonic merging can be performed in O( 1%) parallel
time, p being the number of processors, and executes
only O(n) operations in total. Consequently, adaptive
bitonic sorting can be performed in O(M) time,
which is optimal. So, one of its advantages is that it exe-
cutes a factor of O(logn) less operations than bitonic
sorting. Another advantage is that it can be imple-
mented efficiently on modern GPUs.

Discussion

Introduction

This chapter describes a parallel sorting algorithm,
adaptive bitonic sorting [5], that offers the: following
benefits:

e It needs only the optimal total number of compar-
ison/exchange operations, O(nlogn).

e The hidden constant in the asymptotic number of
operations is less than in other optimal parallel sort-
ing methods.

e It can be implemented in a highly paralle] manner
on modern architectures, such as a streaming archi-
tecture (GPUs), even without any scatter operations,
that is, without random access writes.
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One of the main differences between “regular” bitonic
sorting and adaptive bitonic sorting is that regular
bitonic sorting is data-independent, while adaptive
bitonic sorting is data-dependent (hence the name).

As a consequence, adaptive bitonic sorting cannot
be implemented asa sorting network, but only on archi-
tectures that offer some kind of flow control. Nonethe-
less, it is convenient to derive the method of adaptive
bitonic sorting from bitonic sorting.

Sorting networks have a long history in computer
science research (see the comprehensive survey [2]).
One reason is that sorting networks are a convenient
way to describe parallel sorting algorithms on CREW-
PRAMs or even EREW-PRAMs (which is also called
PRAC for “parallel random access computer”).

In the following, let n denote the number of keys
to be sorted, and p the number of processors. For the
sake of clarity, n will always be assumed to be a power
of 2. (In their original paper [5], Bilardi and Nicolau
have described how to modify the algorithms such that
they can handle arbitrary numbers of keys, but these
technical details will be omitted in this article.)

The first to present a sorting network with optimal
asymptotic complexity were Ajtai, Komlds, and Sze-
merédi [1]. Also, Cole [6] presented an optimal parallel
merge sort approach for the CREW-PRAM as well as
for the EREW-PRAM. However, it has been shown that
neither is fast in practice for reasonable numbers of keys
[8,15].

In contrast, adaptive bitonic sorting requires less
than 2nlog n comparisons in total, independent of the
number of processors. On p processors, it can be imple-

nlogn

n

mented in O( ) time, for p < Togn"

Even with a small number of processors it is effi-
cient in practice: in its original implementation, the
sequential version of the algorithm was at most by a
factor 2.5 slower than quicksort (for sequence lengths
up to 2%) [5].
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Fundamental Properties Asa consequence, all index arithmetic is understood 86

One of the fundamental concepts in this context is the  modulo n, that is, index i + k = i + k mod n, unless 87

notion of a bitonic sequence. otherwise noted, so indices range from 0 through n—-1. 88

As mentioned above, adaptive bitonic sorting can be 89

. L regarded as a variant of bitonic sorting, which isin order 90
Definition 1 (Bitonic sequence) Leta = (ag,...,a,-1)

to capture the notion of “rotational invariance” (in some 91
sense) of bitonic sequences; it is convenient to define the 92
following rotation operator. 93

be a sequence of numbers. Then, a is bitonic, iff it mono-
tonically increases and then monotonically decreases,
or if it can be cyclically shifted (ie., rotated) to
become monotonically increasing and then monoton-
ically decreasing.

Definition 2 (Rotation) Leta = (aog,...,a,-1) and 94
j € N. We define a rotation as an operator R; on the 95

sequence a: 96
Figure 1 shows some examples of bitonic sequences. Rja = (aj,aj11,. . > Ajsn-1) 97

In the following, it will be easier to understand
any reasoning about bitonic sequences, if one consid- This operation is performed by the network shown 98
ers them as being arranged in a circle or on a cylinder:  in Fig. 4. Such networks are comprised of elementary 99
then, there are only two inflection points around the cir-  comparators (see Fig. 3). 100
cle. This is justified by Definition 1. Figure 2 depicts an Two other operators are convenient to describe 101
example in this manner. sorting. 102

f t i

1 n 1 n 1 n

Adaptive Bitonic Sorting. Fig. 1 Three examples of sequences that are bitonic. Obviously, the mirrored sequences (either
way) are bitonic, too

Adaptive Bitonic Sorting. Fig. 2 Left: according to their definition, bitonic sequences can be regarded as lying on a
cylinder or as being arranged in a circle. As such, they consist of one monotonically increasing and one decreasing part.
Middle: in this point of view, the network that performs the L and U operators (see Fig. 5) can be visualized as a wheel of
“spokes.” Right: visualization of the effect of the L and U operators; the blue plane represents the median
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a min(a,b)
b max(a,b)
a max(a,b)
b min(a,b)

Adaptive Bitonic Sorting. Fig. 3 Comparator/exchange
elements

Adaptive Bitonic Sorting. Fig. 4 A network that performs
the rotation operator

—

Adaptive Bitonic Sorting. Fig. 5 A network that performs
the L and U operators

Definition 3 (Half-cleaner) Leta = (aq,...5a,-1).
La= (min(ao, as ) s min(ag_l, an_l)) N
Ua = (max(ao, a;) yeun ,max(ag,l,an_l)) .

In [7], a network that performs these operations
together is called a half-cleaner (see Fig. 5).

It is easy to see that, for any j and a,
La =R_jmod :LRja, (1)
and
Ua = R_jmod 2 URja. 2)
This is the reason why the cylinder metaphor is valid.

The proof needs to consider only two cases: j =

and 1 < j < 2. In the former case, Eq. 1 becomes La

LRza, which can be verified trivially. In the latter case,
Eq. 1 becomes

I I=

LRja = (min(aj, Qjs 2 ) Sy min(ag_l, a,H) s
min(a;-1, 47104
= RJLa

Thus, with the cylinder metaphor, the L and U oper-
ators basically do the following: cut the cylinder with
circumference #n at any point, roll it around a cylinder
with circumference 7, and perform position-wise the
max and min operator, respectively. Some examples are
shown in Fig. 6.

The following theorem states some important prop-

erties of the L and U operators.

Theorem 1 Given a bitonic sequence a,
max{La} < min{Ua}.
Moreover, La and Ua are bitonic too.

In other words, each element of La is less than or
equal to each element of Ua.

This theorem is the basis for the construction of the
bitonic sorter [4]. The first step is to devise a bitonic
merger (BM). We denote a BM that takes as input
bitonic sequences of length n with BM,,. A BM is recur-
sively defined as follows:

BM, (a) = (BM: (La), BM:(Ua) ).

The base case is, of course, a two-key sequence, which
is handled by a single comparator. A BM can be easily
represented in a network as shown in Fig. 7.

Given a bitonic sequence a of length 7, one can show
that

BM,(a) = Sorted(a). (3)

It should be obvious that the sorting direction can be
changed simply by swapping the direction of the ele-
mentary comparators.

Coming back to the metaphor of the cylinder, the
first stage of the bitonic merger in Fig. 7 can be visual-
ized as § comparators, each one connecting an element
of the cylinder with the opposite one, somewhat like
spokes in a wheel. Note that here, while the cylinder can
rotate freely, the “spokes” must remain fixed.

From a bitonic merger, it is straightforward to derive
a bitonic sorter, BS,, that takes an unsorted sequence,
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Adaptive Bitonic Sorting. Fig. 6 Examples of the result of the L and U operators. Conceptually, these operators fold the
bitonic sequence (black), such that the part from indices 5 +1through n (light gray) is shifted into the range 1through 3
(black); then, L and U yield the upper (medium gray) and lower (dark gray) hull, respectively

BM(n)
I\
0 _| q_. [\
u . —
: ‘ ( La BM(n/2)
/21 —| ) P o
o |0 YT O 8
s S
_| ® Y | \
( Ua BM(n/2)
n-1 : bt 10} \\// y

1 stage

Adaptive Bitonic Sorting. Fig. 7 Schematic, recursive diagram of a network that performs bitonic merging

and produces a sorted sequence either up or down.
Like the BM, it is defined recursively, consisting of two
smaller bitonic sorters and a bitonic merger (see Fig. 8).
Again, the base case is the two-key sequence.

Analysis of the Number of Operations of
Bitonic Sorting
Since a bitonic sorter basically consists of a number of
bitonic mergers, it suffices to look at the total number of
comparisons of the latter.

The total number of comparators, C(n), in the
bitonic merger BM,, is given by:

C(n):ZC(g)+ . with C(2) =1,

n
2
which amounts to

C(n) = %nlog n.

As a consequence, the bitonic sorter consists of 171

O(n log’ n) comparators.

Clearly, there is some redundancy in such a net-
work, since n comparisons are sufficient to merge two
sorted sequences. The reason is that the comparisons
performed by the bitonic merger are data-independent.

Derivation of Adaptive Bitonic Merging
The algorithm for adaptive bitonic sorting is based on
the following theorem.

Theorem 2 Let a be a bitonic sequence. Then, there is

an index g such that
La= (aq,...,aq+§,1) (4)
Ua= (anr%,...,aq_l) (5)

(Remember that index arithmetic is always mod-
ulo n.)
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Adaptive Bitonic Sorting. Fig. 8 Schematic, recursive diagram of a bitonic sorting network
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Adaptive Bitonic Sorting. Fig. 9 Visualization for the
proof of Theorem 2

The following outline of the proof assumes, for the
sake of simplicity, that all elements in a are distinct. Let
m be the median of all a;, that is, % elements of a are less
than or equal to m, and % elements are larger. Because
of Theorem 1,

max{La} <m <min{Ua} .

Employing the cylinder metaphor again, the median
m can be visualized as a horizontal plane z = m that
cuts the cylinder. Since a is bitonic, this plane cuts the
sequence in exactly two places, that is, it partitions the
sequence into two contiguous halves (actually, any hor-
izontal plane, i.e., any percentile partitions a bitonic
sequence in two contiguous halves), and since it is
the median, each half must have length % The indices

where the cut happens are g and g + 5. Figure 9 shows
an example (in one dimension).

The following theorem is the final keystone for the
adaptive bitonic sorting algorithm.

Theorem 3 Any bitonic sequence a can be partitioned

into four subsequences (a',a a*,a*) such that either
(La,Ua) = (al,a4,a3,a2) (6)
or
(La,Ua) = (a3,a2,a1,a4). (7)
Furthermore,
n
@'l + 2% = |’ + 2% = 2, (8)
[a'| = 7], 9)
and
%] = |, (10)

where [a| denotes the length of sequence a.

Figure 10 illustrates this theorem by an example.

This theorem can be proven fairly easily too: the
length of the subsequences is just g and 7 —gq, where g is
the same as in Theorem 2. Assuming that max{a'} <
m < min{a’}, nothing will change between those
two subsequences (see Fig. 10). However, in that case
min{a’} > m > max{a'}; therefore, by swap-
ping a? and a* (which have equal length), the bounds
max{(a',a*)} < m < min{a®a’)} are obtained. The
other case can be handled analogously.
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Adaptive Bitonic Sorting. Fig. 10 Example illustrating Theorem 3

Remember that there are 2

5 comparator-and-
exchange elements, each of which compares a; and
ai+z. They will perform exactly this exchange of sub-
sequences, without ever looking at the data.

Now, the idea of adaptive bitonic sorting is to find
the subsequences, that is, to find the index g that marks
the border between the subsequences. Once ¢ is found,
one can (conceptually) swap the subsequences, instead
of performing 7 comparisons unconditionally.

Finding g can be done simply by binary search
driven by comparisons of the form (ai, Qv 2 )

Overall, instead of performing 5 compatisons.in the
first stage of the bitonic merger (see Fig. 7), the adaptive
bitonic merger performs log( %) comparisons in its first
stage (although this stage is no longer representable by
a network).

Let C(n) be the total number of comparisons per-
formed by adaptive bitonic merging, in the worst case.
Then

C(n) = ZC(g) +log(n) = I:Z;Zi log(g) ,

with C(2) = 1,C(1) = 0 and n = 2¥. This amounts to
C(n) =2n-logn - 2.

The only question that remains is how to achieve the
data rearrangement, that is, the swapping of the subse-
quences a' and a® or a and a*, respectively, without
sacrificing the worst-case performance of O(#n). This
can be done by storing the keys in a perfectly balanced
tree (assuming #n = 2%, the so-called bitonic tree. (The
tree can, of course, store only 25 — 1 keys, so the n-th
key is simply stored separately. ) This tree is very similar
to a search tree, which stores a monotonically increas-
ing sequence: when traversed in-order, the bitonic tree
produces a sequence that lists the keys such that there
are exactly two inflection points (when regarded as a
circular list).

Instead of actually copying elements of the sequence
in order to achieve the exchange of subsequences, the
adaptive bitonic merging algorithm swaps O(logn)
pointers in the bitonic tree. The recursion then works on
the two subtrees. With this technique, the overall num-
ber of operations of adaptive bitonic merging is O(n).
Details can be found in [5].

Clearly, the adaptive bitonic sorting algorithm needs
O(nlogn) operations in total, because it consists of
log(n) many complete merge stages (see Fig. 8).
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It should also be fairly obvious that the adaptive
bitonic sorter performs an (adaptive) subset of the com-
parisons that are executed by the (nonadaptive) bitonic
sorter.

The Parallel Algorithm
So far, the discussion assumed a sequential implemen-
tation. Obviously, the algorithm for adaptive bitonic
merging can be implemented on a parallel architecture,
just like the bitonic merger, by executing recursive calls
on the same level in parallel.

Unfortunately, a naive implementation would
require O(log2 n) steps in the worst case, since there
are log(n) levels. The bitonic merger achieves O(logn)
parallel time, because all pairwise comparisons within
one stage can be performed in parallel. But this is not
straightforward to achieve for the log(n) comparisons
of the binary-search method in adaptive bitonic merg-
ing, which are inherently sequential.

However, a careful analysis of the data dependencies
between comparisons of successive stages reveals that
the execution of different stages can be partially over-
lapped [5]. As La, Ua are being constructed in one stage
by moving down the tree in parallel layer by layer (occa-
sionally swapping pointers); this process can be started
for the next stage, which begins one layer beneath the
one where the previous stage began, before the first stage
has finished, provided the first stage has progressed “far
enough” in the tree. Here, “far enough” means exactly
two layers ahead.

This leads to a parallel version of the adaptive bitonic
merge algorithm that executes in time O(%) for p €

O(@), that is, it can be executed in (log #) parallel
time.

Furthermore, the data that needs to be communi-
cated between processors (either via memory, or via
communication channels) is in O(p).

It is straightforward to apply the classical sorting-
by-merging approach here (see Fig. 8), which yields the
adaptive bitonic sorting algorithm. This can be imple-
mented on an EREW machine with p processors in

O(”l;#) time, for p € O(lo’g‘n )

A GPU Implementation
Because adaptive bitonic sorting has excellent scalabil-
ity (the number of processors, p, can go up to n/ log(n))

and the amount of inter-process communication is 315
fairly low (only O(p)), it is perfectly suitable for imple- 316
mentation on stream processing architectures. In addi- 317
tion, although it was designed for a random access 318
architecture, adaptive bitonic sorting can be adapted to 319
a stream processor, which (in general) does not have the 320
ability of random-access writes. Finally, it can be imple- 321
mented on a GPU such that there are only O(logz(n)) 322
passes (by utilizing O(n/log(n)) (conceptual) proces- 323
sors), which is very important, since the number of 324
passes is one of the main limiting factors on GPUs. 325

This section provides more details on the imple- 326
mentation on a GPU, called “GPU-ABiSort” [11, 12]. 327
For the sake of simplicity, the following always assumes 328

Algorithm 1: Adaptive construction of La and Ua
(one stage of adaptive bitonic merging)

input : Bitonic tree, with root node r and extra
node e, representing bitonic sequence a

output: La in the left subtree of r plus root r, and Ua
in the right subtree of r plus extra node e
// phase 0: determine case

if value (r) <value (e) then
case=1

else
case=2

swap value (r) and value (e)
(p,q)=(left(r) ,right(r))
for i=1,...,logn—-1do

// phase i

test=(value (p) >value(q) )

if test == true then
swap values of p and q

if case ==1then
swap the pointers left (p) and

left (q)
else
swap the pointers right (p) and
right (q)
if (case ==1and test == false ) or ( case ==
2 and test == true ) then
(p,g)=(left(p),left(q))
else
(p,q )=(right(p),right(q))
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Algorithm 2: Merging a bitonic sequence to obtain a
sorted sequence

input : Bitonic tree, with root node r and extra
node e, representing bitonic sequence a

output: Sorted tree (produces sort (a) when
traversed in-order)

construct La and Ua in the bitonic tree by 1

call merging recursively with 1eft (r) asrootandr
as extra node

call merging recursively with right (r) as root and
e as extra node

increasing sorting direction, and it is thus not explicitely
specified. As noted above, the sorting direction must
be reversed in the right branch of the recursion in the
bitonic sorter, which basically amounts to reversing the
comparison direction of the values of the keys, that is,
compare for < instead of > in 3.

As noted above, the bitonic tree stores the sequence
(ao,-..,a,—2) in in-order, and the key a,_; is stored in
the extra node. As mentioned above, an algorithm that
constructs (La, Ua) from a can traverse this bitonic tree
and swap pointers as necessary. The index g, which is
mentioned in the proof for Theorem 3, is only deter-
mined implicitly. The two different cases that are men-
tioned in Theorem 3 and Egs. 6 and 7 can be distin-
guished simply by comparing elements az_; and @,

This leads to 1. Note that the root of the bitonic
tree stores element az_y and the extra node stores a,,_;.
Applying this recursively yields 2. Note that the bitonic
tree needs to be constructed only once at the beginning
during setup time.

Because branches are very costly on GPUs, one
should avoid as many conditionals in the inner loops
as possible. Here, one can exploit the fact that R,,,a =
(ag, ey Gp_1, 40> . - .,ag,l) is bitonic, provided a is
bitonic too. This operation basically amounts to swap-
ping the two pointers left(root) and right(root). The
simplified construction of La and Ua is presented in 3.
(Obviously, the simplified algorithm now really needs
trees with pointers, whereas Bilardi’s original bitonic
tree could be implemented pointer-less (since it is a
complete tree). However, in a real-world implementa-
tion, the keys to be sorted must carry pointers to some

Algorithm 3: Simplified adaptive construction of La

and Ua

input : Bitonic tree, with root node r and extra
node e, representing bitonic sequence a

output: La in the left subtree of r plus root r, and Ua
in the right subtree of r plus extra node e

// phase 0

if value (r) >value (e) then
swap value (r) and value (e)

swap pointers left (r) and right (r)
(p,q)=(left(r),right (r))
for i=1,...,logn—-1do

// phase i

if value (p) >value (q) then
swap value (p) and value (q)

swap pointers left (p) and left (q)
(p,q )= (right (p),right(q))

else
(p,g )=(left (p),left(q))

“payload” data anyway, so the additional memory over-
head incurred by the child pointers is at most a factor
15.)

Outline of the Implementation

As explained above, on each recursion level j =
L,...,log(n) of the adaptive bitonic sorting algorithm,
2'°87=7*1 bitonic trees, each consisting of 2/~' nodes,
have to be merged into 28"~/ bitonic trees of 2/ nodes.
The merge is performed in j stages. In each stage k =
0,...,j—1, the construction of La and Ua is executed on
2k subtrees. Therefore, 21°6"7/2 instances of the La / Ua
construction algorithm can be executed in parallel dur-
ing that stage. On a stream architecture, this potential
parallelism can be exposed by allocating a stream con-
sisting of 2!°8" 7+ elements and executing a so-called
kernel on each element.

The La / Ua construction algorithm consists of j — k
phases, where each phase reads and modifies a pair
of nodes, (p,q), of a bitonic tree. Assume that a ker-
nel implementation performs the operation of a single
phase of this algorithm. (How such a kernel implemen-
tation is realized without random-access writes will be
described below.) The temporary data that have to be
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preserved from one phase of the algorithm to the next
one are just two node pointers (p and g) per kernel
instance. Thus, each of the 2'°8 "/+k
cated stream consist of exactly these two node pointers.
When the kernel is invoked on that stream, each kernel
instance reads a pair of node pointers, (p,q), from the
stream, performs one phase of the La/Ua construction
algorithm, and finally writes the updated pair of node
pointers (p, q) back to the stream.

elements of the allo-

Eliminating Random-Access Writes

Since GPUs do not support random-access writes (at
least, for almost all practical purposes, random-access
writes would kill any performance gained by the paral-
lelism) the kernel has to be implement so that it modifies
node pairs (p,q) of the bitonic tree without random-
access writes. This means that it can output node pairs
from the kernel only via linear stream write. But this
way it cannot write a modified node pair to its original
location from where it was read. In addition, it can-
not simply take an input stream (containing a bitonic
tree) and produce another output stream (containing
the modified bitonic tree), because then it would have to
process the nodes in the same order as they are stored in
memory, but the adaptive bitonic merge processes them
in a random, data-dependent order.

Fortunately, the bitonic tree is a linked data structure
where all nodes are directly or indirectly linked to the
root (except for the extra node). This allows us to change
the location of nodes in memory during the merge algo-
rithm as long as the child pointers of their respective
parent nodes are updated (and the root and extra node
of the bitonic tree are kept at well-defined memoryloca-
tions). This means that for each node that is modified its
parent node has to be modified also, in order to update
its child pointers.

Notice that 3 basically traverses the bitonic tree
down along a path, changing some of the nodes as nec-
essary. The strategy is simple: simply output every node
visited along this path to a stream. Since the data lay-
out is fixed and predetermined, the kernel can store the
index of the children with the node as it is being writ-
ten to the output stream. One child address remains
the same anyway, while the other is determined when
the kernel is still executing for the current node. Fig-
ure 11 demonstrates the operation of the stream pro-
gram using the described stream output technique.
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432
433
434
435
436
437

Complexity

A simple implementation on the GPU would need
O(log2 n) phases (or “passes” in GPU parlance) in
total for adaptive bitonic sorting, which amounts to
O(log3 n) operations in total.

This is already very fast in practice. However, the
optimal complexity of O(logn) passes can be achieved
exactly as described in the original work [5], that is,
phase i of a stage k can be executed immediately after 438
phase i+ 1 of stage k — 1 has finished. Therefore, the exe- 439
cution of a new stage can start at every other step of the 440
algorithm. 441

The only difference from the simple implementation 442
is that kernels now must write to parts of the output 443
stream, because other parts are still in use. 444

GPU-Specific Details 445
For the input and output streams, it is best to apply the 446
ping-pong technique commonly used in GPU program- 447
ming:-allocate two such streams and alternatingly use 448
one of them as input and the other one as output stream. 449

Preconditioning the Input
For merge-based sorting on a PRAM architecture (and
assuming p < n), it is a common technique to sort
locally, in a first step, p blocks of n/p values, that is, each
processor sorts 7/p values using a standard sequential
algorithm.

The same technique can be applied here by imple-
menting such a local sort as a kernel program. However,

454
455
456
457
since there is no random write access to non-temporary 458
memory from a kernel, the number of values that can be 459
sorted locally by a kernel is restricted by the number of 460
temporary registers. 461

On recent GPUs, the maximum output data size of 462
a kernel is 16 x 4 bytes. Since usually the input consists 463
of key/pointer pairs, the method starts with a local sort 464
of 8-key/pointer pairs per kernel. For such small num- 465
bers of keys, an algorithm with asymptotic complexity 466
of O(n) performs faster than asymptotically optimal 467
algorithms. 468

After the local sort, a further stream operation 469
converts the resulting sorted subsequences of length 470
8 pairwise to bitonic trees, each containing 16 nodes. 471
Thereafter, the GPU-ABiSort approach can be applied 472

as described above, starting with j = 4. 473
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Adaptive Bitonic Sorting. Fig. 11 To execute several instances of the adaptive La/Ua construction algorithm in parallel,
where each instance operates on a bitonic tree of 2° nodes, three phases are required. This figure illustrates the operation
of these three phases. On the left, the node pointers contained in the input stream are shown as well as the comparisons
performed by the kernel program. On the right, the node pointers written to the output stream are shown as well as the
modifications of the child pointers and node values performed by the kernel program according to 3

The Last Stage of Each Merge

Adaptive bitonic merging, being a recursive procedure,
eventually merges small subsequences, for instance of
length 16. For such small subsequences it is better to use
a (nonadaptive) bitonic merge implementation that can

be executed in a single pass of the whole stream.

Timings

The following experiments were done on arrays consist-
ing of key/pointer pairs, where the key is a uniformly
distributed random 32-bit floating point value and the
pointer a 4-byte address. Since one can assume (without

unique, these can be used as secondary sort keys for the
adaptive bitonic merge.

The experiments described in the following com-
pare the implementation of GPU-ABiSort of [11, 12] with
sorting on the CPU using the C++ STL sort function (an
optimized quicksort implementation) as well as with the
(nonadaptive) bitonic sorting network implementation
on the GPU by Govindaraju et al., called GPUSort [10].

Contrary to the CPU STL sort, the timings of GPU-
ABiSort do not depend very much on the data to be
sorted, because the total number of comparisons per-
formed by the adaptive bitonic sorting is not data-
dependent.

loss of generality) that all pointers in the given array are

486
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488
489
490
491
492
493
494
495
496
497
498
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n CPU sort GPUSort GPU-ABiISort

32,768 9-11ms 4 ms 5ms
65,536 19-24 ms 8 ms 8 ms
131,072 46-52 ms 18 ms 16 ms
262,144 98-109 ms 38 ms 31 ms
524,288 203—226 ms 80 ms 65 ms
1,048,576 418-477 ms 173 ms 135 ms
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Adaptive Bitonic Sorting. Fig. 12 Timings on a GeForce 7800 system. (There are two curves for the CPU sort, so as to

visualize that its running time is somewhat data-dependent)

Table 12 shows the results of timings performed on
a PCI Express bus PC system with an AMD Athlon-
64 4200+ CPU and an NVIDIA GeForce 7800 GTX
GPU with 256 MB memory. Obviously, the speedup
of GPU-ABiSort compared to CPU sorting is 3.1-3.5
for n > 2", Furthermore, up to the maximum tested
sequence length n = 220 (= 1,048,576), GPU-ABiSort is
up to 1.3 times faster than GPUSort, and this speedup is
increasing with the sequence length n, as expected.

The timings of the GPU approaches assume that the
input data is already stored in GPU memory. When
embedding the GPU-based sorting into an otherwise
purely CPU-based application, the input data has to be
transferred from CPU to GPU memory, and afterwards
the output data has to be transferred back to CPU mem-
ory. However, the overhead of this transfer is usually
negligible compared to the achieved sorting speedup:
according to measurements by [11], the transfer of one
million key/pointer pairs from CPU to GPU and back
takes in total roughly 20 ms on a PCI Express bus PC.

Conclusion

Adaptive bitonic sorting is not only appealing from a
theoretical point of view, but also from a practical one.
Unlike other parallel sorting algorithms that exhibit
optimal asymptotic complexity too, adaptive bitonic
sorting offers low hidden constants in its asymptotic
complexity and can be implemented on parallel archi-
tectures by a reasonably experienced programmer. The
practical implementation of it on a GPU outperforms
the implementation of simple bitonic sorting on the

same GPU by a factor 1.3, and it is a factor 3 faster than
a standard CPU sorting implementation (STL).

Related Entries
»AKS Network

» Bitonic Sort
»Lock-Free Algorithms
» Scalability

»Speedup

Bibliographic Notes and Further
Reading

As mentioned in the introduction, this line of research
began with the seminal work of Batcher [4] in the
late 1960s, who described parallel sorting as a network.
Research of parallel sorting algorithms was reinvigo-
rated in the 1980s, where a number of theoretical ques-
tions have been settled [1, 3, 5, 6, 14, 18].

Another wave of research on parallel sorting ensued
from the advent of affordable, massively parallel archi-
tectures, namely, GPUs, which are, more precisely,
streaming architectures. This spurred the development
of a number of practical implementations [9, 11-13, 16,
17,19].
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