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Gabriel Zachmann
Clausthal University, Clausthal-Zellerfeld, Germany

Definition

Adaptive bitonic sorting is a sorting algorithm suitable
for implementation on EREW parallel architectures.
Similar to bitonic sorting, it is based onmerging, which
is recursively applied to obtain a sorted sequence. In
contrast to bitonic sorting, it is data-dependent. Adap-

tive bitonic merging can be performed inO( np ) parallel
time, p being the number of processors, and executes
only O(n) operations in total. Consequently, adaptive

bitonic sorting can be performed in O( n log np ) time,
which is optimal. So, one of its advantages is that it exe-
cutes a factor of O(logn) less operations than bitonic
sorting. Another advantage is that it can be imple-
mented e5ciently on modern GPUs.

Discussion

Introduction

6is chapter describes a parallel sorting algorithm,
adaptive bitonic sorting [], that o7ers the following
bene8ts:

● It needs only the optimal total number of compar-
ison/exchange operations, O(n logn). ● 6e hidden constant in the asymptotic number of
operations is less than in other optimal parallel sort-
ing methods. ● It can be implemented in a highly parallel manner
on modern architectures, such as a streaming archi-
tecture (GPUs), even without any scatter operations,
that is, without random access writes.

One of the main di7erences between “regular” bitonic 
sorting and adaptive bitonic sorting is that regular 
bitonic sorting is data-independent, while adaptive 
bitonic sorting is data-dependent (hence the name). 

As a consequence, adaptive bitonic sorting cannot 
be implemented as a sorting network, but only on archi- 
tectures that o7er some kind of 9ow control. Nonethe- 
less, it is convenient to derive the method of adaptive 
bitonic sorting from bitonic sorting. 

Sorting networks have a long history in computer 
science research (see the comprehensive survey []). 
One reason is that sorting networks are a convenient 
way to describe parallel sorting algorithms on CREW- 
PRAMs or even EREW-PRAMs (which is also called 
PRAC for “parallel random access computer”). 

In the following, let n denote the number of keys 
to be sorted, and p the number of processors. For the 
sake of clarity, n will always be assumed to be a power 
of . (In their original paper [], Bilardi and Nicolau 
have described how to modify the algorithms such that 
they can handle arbitrary numbers of keys, but these 
technical details will be omitted in this article.) 

6e 8rst to present a sorting network with optimal 
asymptotic complexity were Ajtai, Komlós, and Sze- 
merédi []. Also, Cole [] presented an optimal parallel 
merge sort approach for the CREW-PRAM as well as 
for the EREW-PRAM. However, it has been shown that 
neither is fast in practice for reasonable numbers of keys 
[, ]. 

In contrast, adaptive bitonic sorting requires less 
than n logn comparisons in total, independent of the 
number of processors. On p processors, it can be imple- 

mented in O( n log np ) time, for p ≤ n
log n . 

Even with a small number of processors it is e5- 
cient in practice: in its original implementation, the 
sequential version of the algorithm was at most by a 
factor . slower than quicksort (for sequence lengths 
up to ) []. 
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 A Adaptive Bitonic Sorting

Fundamental Properties

One of the fundamental concepts in this context is the
notion of a bitonic sequence.

De!nition  (Bitonic sequence) Let a = (a, . . . ,an−)
be a sequence of numbers.6en, a is bitonic, i7 it mono-
tonically increases and then monotonically decreases,
or if it can be cyclically shi:ed (i.e., rotated) to
become monotonically increasing and then monoton-
ically decreasing.

Figure  shows some examples of bitonic sequences.
In the following, it will be easier to understand

any reasoning about bitonic sequences, if one consid-
ers them as being arranged in a circle or on a cylinder:
then, there are only two in9ection points around the cir-
cle. 6is is justi8ed by De8nition . Figure  depicts an
example in this manner.

As a consequence, all index arithmetic is understood 
modulo n, that is, index i + k ≡ i + kmod n, unless 
otherwise noted, so indices range from  through n− . 

Asmentioned above, adaptive bitonic sorting can be 
regarded as a variant of bitonic sorting, which is in order 
to capture the notion of “rotational invariance” (in some 
sense) of bitonic sequences; it is convenient to de8ne the 
following rotation operator. 

De!nition  (Rotation) Let a = (a, . . . ,an−) and 
j ∈ N. We de8ne a rotation as an operator Rj on the 
sequence a: 

Rja = (aj,aj+ , . . . ,aj+n−) 

6is operation is performed by the network shown 
in Fig. . Such networks are comprised of elementary 
comparators (see Fig. ). 

Two other operators are convenient to describe 
sorting. 

i
1 n

i
1 n

i
1 n

Adaptive Bitonic Sorting. Fig.  Three examples of sequences that are bitonic. Obviously, the mirrored sequences (either
way) are bitonic, too

Adaptive Bitonic Sorting. Fig.  Left: according to their definition, bitonic sequences can be regarded as lying on a
cylinder or as being arranged in a circle. As such, they consist of one monotonically increasing and one decreasing part.
Middle: in this point of view, the network that performs the L and U operators (see Fig. ) can be visualized as a wheel of
“spokes.”Right: visualization of the effect of the L and U operators; the blue plane represents the median



Encyclopedia of Parallel Computing “00101” — 2011/4/16 — 13:39 — Page 3 — #4

Co
rre
ct
ed

Pr
oo
f

Adaptive Bitonic Sorting A 

a

b

min(a,b)

max(a,b)

a

b

max(a,b)

min(a,b)

Adaptive Bitonic Sorting. Fig.  Comparator/exchange
elements

Adaptive Bitonic Sorting. Fig.  A network that performs
the rotation operator

Adaptive Bitonic Sorting. Fig.  A network that performs
the L and U operators

De!nition  (Half-cleaner) Let a = (a, . . . ,an−).

La = (min(a,a n

) , . . . ,min(a n

 −,an−)) ,

Ua = (max(a,a n

) , . . . ,max(a n

 −,an−)) .

In [], a network that performs these operations
together is called a half-cleaner (see Fig. ).

It is easy to see that, for any j and a,

La = R−j mod n

LRja, ()



and

Ua = R−j mod n

URja. ()

6is is the reason why the cylinder metaphor is valid.

6e proof needs to consider only two cases: j = n
 

and  ≤ j < n
 . In the former case, Eq.  becomes La = 

LR n

a, which can be veri8ed trivially. In the latter case, 

Eq.  becomes 

LRja = (min(aj,aj+ n

) , . . . ,min(a n

 −,an−) , . . . , 

min(aj− ,aj−+ n

)) 

= RjLa. 

6us, with the cylindermetaphor, the L andU oper- 
ators basically do the following: cut the cylinder with 
circumference n at any point, roll it around a cylinder 
with circumference n

 , and perform position-wise the 
max and min operator, respectively. Some examples are 
shown in Fig. . 

6e following theorem states some important prop- 
erties of the L and U operators. 

%eorem  Given a bitonic sequence a, 

max{La} ≤ min{Ua} . 

Moreover, La and Ua are bitonic too. 

In other words, each element of La is less than or 
equal to each element of Ua. 

6is theorem is the basis for the construction of the 
bitonic sorter []. 6e 8rst step is to devise a bitonic 
merger (BM). We denote a BM that takes as input 
bitonic sequences of length nwith BMn . A BM is recur- 
sively de8ned as follows: 

BMn(a) = (BM n

(La), BM n


(Ua) ) . 

6e base case is, of course, a two-key sequence, which 
is handled by a single comparator. A BM can be easily 
represented in a network as shown in Fig. . 

Given a bitonic sequence a of length n, one can show 
that 

BMn(a) = Sorted(a). () 

It should be obvious that the sorting direction can be 
changed simply by swapping the direction of the ele- 
mentary comparators. 

Coming back to the metaphor of the cylinder, the 
8rst stage of the bitonic merger in Fig.  can be visual- 
ized as n

 comparators, each one connecting an element 
of the cylinder with the opposite one, somewhat like 
spokes in a wheel. Note that here, while the cylinder can 
rotate freely, the “spokes” must remain 8xed. 

Froma bitonicmerger, it is straightforward to derive 
a bitonic sorter, BSn, that takes an unsorted sequence, 
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 A Adaptive Bitonic Sorting

i
1 n/2

a

Ua

La

i
1 nn/2

a

Ua

La

Adaptive Bitonic Sorting. Fig.  Examples of the result of the L and U operators. Conceptually, these operators fold the
bitonic sequence (black), such that the part from indices n

 +  through n (light gray) is shifted into the range  through n


(black); then, L and U yield the upper (medium gray) and lower (dark gray) hull, respectively

BM(n)

BM(n/2)

La

Ua

0

n/2-1

n–1

n/2B
ito

ni
c

S
or

te
d

1 stage

BM(n/2)

Adaptive Bitonic Sorting. Fig.  Schematic, recursive diagram of a network that performs bitonic merging

and produces a sorted sequence either up or down.
Like the BM, it is de8ned recursively, consisting of two
smaller bitonic sorters and a bitonic merger (see Fig. ).
Again, the base case is the two-key sequence.

Analysis of the Number of Operations of

Bitonic Sorting

Since a bitonic sorter basically consists of a number of
bitonic mergers, it su5ces to look at the total number of
comparisons of the latter.

6e total number of comparators, C(n), in the
bitonic merger BMn is given by:

C(n) = C(n

) + n


, with C() = ,

which amounts to

C(n) = 

n logn.

As a consequence, the bitonic sorter consists of 
O(n log n) comparators. 

Clearly, there is some redundancy in such a net- 
work, since n comparisons are su5cient to merge two 
sorted sequences. 6e reason is that the comparisons 
performed by the bitonic merger are data-independent. 

Derivation of Adaptive Bitonic Merging 

6e algorithm for adaptive bitonic sorting is based on 
the following theorem. 

%eorem  Let a be a bitonic sequence. 6en, there is 
an index q such that 

La = (aq, . . . ,aq+ n
 −) () 

Ua = (aq+ n

, . . . ,aq−) () 

(Remember that index arithmetic is always mod- 
ulo n.) 
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Adaptive Bitonic Sorting A 

S
or

te
d

BS(n/2)

0

n/2-1

n-1

n/2U
ns

or
te

d

S
or

te
d

BS(n/2)

BS(n)

B
ito

ni
c

BM(n) S
or

te
d

Adaptive Bitonic Sorting. Fig.  Schematic, recursive diagram of a bitonic sorting network

0 n-1q+n/2 q

m

U L

Adaptive Bitonic Sorting. Fig.  Visualization for the
proof of Theorem 

6e following outline of the proof assumes, for the
sake of simplicity, that all elements in a are distinct. Let
m be the median of all ai, that is, n elements of a are less
than or equal to m, and n

 elements are larger. Because
of6eorem ,

max{La} ≤ m <min{Ua} .

Employing the cylinder metaphor again, the median
m can be visualized as a horizontal plane z = m that
cuts the cylinder. Since a is bitonic, this plane cuts the
sequence in exactly two places, that is, it partitions the
sequence into two contiguous halves (actually, any hor-
izontal plane, i.e., any percentile partitions a bitonic
sequence in two contiguous halves), and since it is
the median, each half must have length n

 . 6e indices

where the cut happens are q and q + n
 . Figure  shows 

an example (in one dimension). 
6e following theorem is the 8nal keystone for the 

adaptive bitonic sorting algorithm. 

%eorem  Any bitonic sequence a can be partitioned 
into four subsequences (a, a , a, a) such that either 

(La,Ua) = (a, a , a, a) () 

or 

(La,Ua) = (a , a, a, a). () 

Furthermore, 

∣a ∣ + ∣a∣ = ∣a ∣ + ∣a ∣ = n

, () 



∣a∣ = ∣a ∣ , () 

and 

∣a ∣ = ∣a∣ , () 

where ∣a∣ denotes the length of sequence a. 

Figure  illustrates this theorem by an example. 
6is theorem can be proven fairly easily too: the 

length of the subsequences is just q and n
 −q, where q is 

the same as in 6eorem . Assuming that max{a} < 
m < min{a}, nothing will change between those 
two subsequences (see Fig. ). However, in that case 
min{a} > m > max{a}; therefore, by swap- 
ping a and a (which have equal length), the bounds 
max{(a, a)} < m < min{a, a)} are obtained. 6e 
other case can be handled analogously. 
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 A Adaptive Bitonic Sorting

0a n – 1n/2 0 n – 1n/2

m

q q + n/2

a1 a2 a3 a4

0 n – 1n/2

m

q q + n/2

a1 a2a3a4

0 n/2

m

q

La Ua

a

Ua

La

d

b

c

Adaptive Bitonic Sorting. Fig.  Example illustrating Theorem 

Remember that there are n
 comparator-and-

exchange elements, each of which compares ai and
ai+ n


. 6ey will perform exactly this exchange of sub-

sequences, without ever looking at the data.
Now, the idea of adaptive bitonic sorting is to 8nd

the subsequences, that is, to 8nd the index q that marks
the border between the subsequences. Once q is found,
one can (conceptually) swap the subsequences, instead
of performing n

 comparisons unconditionally.
Finding q can be done simply by binary search

driven by comparisons of the form (ai,ai+ n

).

Overall, instead of performing n
 comparisons in the

8rst stage of the bitonic merger (see Fig. ), the adaptive
bitonic merger performs log( n ) comparisons in its 8rst
stage (although this stage is no longer representable by
a network).

Let C(n) be the total number of comparisons per-
formed by adaptive bitonic merging, in the worst case.
6en

C(n) = C(n

) + log(n) = k−∑

i=
i log( n

i
) ,

with C() = ,C() =  and n = k .6is amounts to 

C(n) = n − logn − . 

6e only question that remains is how to achieve the 
data rearrangement, that is, the swapping of the subse- 
quences a and a or a and a, respectively, without 
sacri8cing the worst-case performance of O(n). 6is 
can be done by storing the keys in a perfectly balanced 
tree (assuming n = k), the so-called bitonic tree. (6e 
tree can, of course, store only k −  keys, so the n-th 
key is simply stored separately. )6is tree is very similar 
to a search tree, which stores a monotonically increas- 
ing sequence: when traversed in-order, the bitonic tree 
produces a sequence that lists the keys such that there 
are exactly two in9ection points (when regarded as a 
circular list). 

Instead of actually copying elements of the sequence 
in order to achieve the exchange of subsequences, the 
adaptive bitonic merging algorithm swaps O(logn) 
pointers in the bitonic tree.6e recursion thenworks on 
the two subtrees. With this technique, the overall num- 
ber of operations of adaptive bitonic merging is O(n). 
Details can be found in []. 

Clearly, the adaptive bitonic sorting algorithmneeds 
O(n logn) operations in total, because it consists of 
log(n)many complete merge stages (see Fig. ). 
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Adaptive Bitonic Sorting A 

It should also be fairly obvious that the adaptive
bitonic sorter performs an (adaptive) subset of the com-
parisons that are executed by the (nonadaptive) bitonic
sorter.

The Parallel Algorithm

So far, the discussion assumed a sequential implemen-
tation. Obviously, the algorithm for adaptive bitonic
merging can be implemented on a parallel architecture,
just like the bitonic merger, by executing recursive calls
on the same level in parallel.

Unfortunately, a naïve implementation would
require O(log n) steps in the worst case, since there
are log(n) levels.6e bitonic merger achieves O(logn)
parallel time, because all pairwise comparisons within
one stage can be performed in parallel. But this is not
straightforward to achieve for the log(n) comparisons
of the binary-search method in adaptive bitonic merg-
ing, which are inherently sequential.

However, a careful analysis of the data dependencies
between comparisons of successive stages reveals that
the execution of di7erent stages can be partially over-
lapped []. As La,Ua are being constructed in one stage
bymoving down the tree in parallel layer by layer (occa-
sionally swapping pointers); this process can be started
for the next stage, which begins one layer beneath the
onewhere the previous stage began, before the8rst stage
has 8nished, provided the 8rst stage has progressed “far
enough” in the tree. Here, “far enough” means exactly
two layers ahead.

6is leads to a parallel version of the adaptive bitonic

merge algorithm that executes in time O( np ) for p ∈

O( n
log n), that is, it can be executed in (logn) parallel

time.
Furthermore, the data that needs to be communi-

cated between processors (either via memory, or via
communication channels) is in O(p).

It is straightforward to apply the classical sorting-
by-merging approach here (see Fig. ), which yields the
adaptive bitonic sorting algorithm. 6is can be imple-
mented on an EREW machine with p processors in

O( n log np ) time, for p ∈ O( n
log n).

A GPU Implementation

Because adaptive bitonic sorting has excellent scalabil-
ity (the number of processors, p, can go up to n/ log(n))

and the amount of inter-process communication is 
fairly low (only O(p)), it is perfectly suitable for imple- 
mentation on stream processing architectures. In addi- 
tion, although it was designed for a random access 
architecture, adaptive bitonic sorting can be adapted to 
a stream processor, which (in general) does not have the 
ability of random-access writes. Finally, it can be imple- 
mented on a GPU such that there are only O(log(n)) 
passes (by utilizing O(n/ log(n)) (conceptual) proces- 
sors), which is very important, since the number of 
passes is one of the main limiting factors on GPUs. 

6is section provides more details on the imple- 
mentation on a GPU, called “GPU-ABiSort” [, ]. 
For the sake of simplicity, the following always assumes 

Algorithm : Adaptive construction of La and Ua
(one stage of adaptive bitonic merging)
input : Bitonic tree, with root node r and extra

node e, representing bitonic sequence a
output : La in the le: subtree of r plus root r, and Ua

in the right subtree of r plus extra node e
// phase : determine case

if value(r) < value(e) then
case = 

else
case = 
swap value(r) and value(e)

( p, q ) = ( left(r) , right(r) )
for i = , . . . , logn −  do

// phase i

test = ( value(p) > value(q) )
if test == true then

swap values of p and q

if case ==  then
swap the pointers left(p) and
left(q)

else
swap the pointers right(p) and
right(q)

if ( case ==  and test == false ) or ( case ==
 and test == true ) then
( p, q ) = ( left(p) , left(q) )

else
( p, q ) = ( right(p) , right(q) )
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 A Adaptive Bitonic Sorting

Algorithm : Merging a bitonic sequence to obtain a
sorted sequence
input : Bitonic tree, with root node r and extra

node e, representing bitonic sequence a
output : Sorted tree (produces sort(a) when

traversed in-order)
construct La and Ua in the bitonic tree by 
call merging recursively with left(r) as root and r
as extra node
call merging recursively with right(r) as root and
e as extra node

increasing sorting direction, and it is thus not explicitely
speci8ed. As noted above, the sorting direction must
be reversed in the right branch of the recursion in the
bitonic sorter, which basically amounts to reversing the
comparison direction of the values of the keys, that is,
compare for < instead of > in .

As noted above, the bitonic tree stores the sequence (a, . . . ,an−) in in-order, and the key an− is stored in
the extra node. As mentioned above, an algorithm that
constructs (La,Ua) from a can traverse this bitonic tree
and swap pointers as necessary. 6e index q, which is
mentioned in the proof for 6eorem , is only deter-
mined implicitly. 6e two di7erent cases that are men-
tioned in 6eorem  and Eqs.  and  can be distin-
guished simply by comparing elements a n

 − and an−.
6is leads to . Note that the root of the bitonic

tree stores element a n
 − and the extra node stores an−.

Applying this recursively yields . Note that the bitonic
tree needs to be constructed only once at the beginning
during setup time.

Because branches are very costly on GPUs, one
should avoid as many conditionals in the inner loops
as possible. Here, one can exploit the fact that Rn/a = (a n


, . . . ,an−,a, . . . ,a n

 −) is bitonic, provided a is
bitonic too. 6is operation basically amounts to swap-
ping the two pointers left(root) and right(root). 6e
simpli8ed construction of La and Ua is presented in .
(Obviously, the simpli8ed algorithm now really needs
trees with pointers, whereas Bilardi’s original bitonic
tree could be implemented pointer-less (since it is a
complete tree). However, in a real-world implementa-
tion, the keys to be sorted must carry pointers to some

Algorithm : Simpli8ed adaptive construction of La
and Ua
input : Bitonic tree, with root node r and extra

node e, representing bitonic sequence a
output : La in the le: subtree of r plus root r, and Ua

in the right subtree of r plus extra node e
// phase 

if value(r) > value(e) then
swap value(r) and value(e)
swap pointers left(r) and right(r)

( p, q ) = ( left(r) , right(r) )
for i = , . . . , logn −  do

// phase i

if value(p) > value(q) then
swap value(p) and value(q)
swap pointers left(p) and left(q)
( p, q ) = ( right(p) , right(q) )

else
( p, q ) = ( left(p) , left(q) )

“payload” data anyway, so the additional memory over- 
head incurred by the child pointers is at most a factor 
..) 

Outline of the Implementation 

As explained above, on each recursion level j = 
, . . . , log(n) of the adaptive bitonic sorting algorithm, 
log n−j+ bitonic trees, each consisting of j− nodes, 
have to be merged into log n−j bitonic trees of j nodes. 
6e merge is performed in j stages. In each stage k = 
, . . . , j−, the construction of La andUa is executed on 
k subtrees.6erefore, log n−j⋅k instances of the La /Ua 
construction algorithm can be executed in parallel dur- 
ing that stage. On a stream architecture, this potential 
parallelism can be exposed by allocating a stream con- 
sisting of log n−j+k elements and executing a so-called 
kernel on each element. 

6e La / Ua construction algorithm consists of j− k 
phases, where each phase reads and modi8es a pair 
of nodes, (p, q), of a bitonic tree. Assume that a ker- 
nel implementation performs the operation of a single 
phase of this algorithm. (How such a kernel implemen- 
tation is realized without random-access writes will be 
described below.) 6e temporary data that have to be 
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Adaptive Bitonic Sorting A 

preserved from one phase of the algorithm to the next
one are just two node pointers (p and q) per kernel
instance.6us, each of the log n−j+k elements of the allo-
cated stream consist of exactly these two node pointers.
When the kernel is invoked on that stream, each kernel
instance reads a pair of node pointers, (p, q), from the
stream, performs one phase of the La/Ua construction
algorithm, and 8nally writes the updated pair of node
pointers (p, q) back to the stream.

Eliminating Random-Access Writes

Since GPUs do not support random-access writes (at
least, for almost all practical purposes, random-access
writes would kill any performance gained by the paral-
lelism) the kernel has to be implement so that itmodi8es
node pairs (p, q) of the bitonic tree without random-
access writes. 6is means that it can output node pairs
from the kernel only via linear stream write. But this
way it cannot write a modi8ed node pair to its original
location from where it was read. In addition, it can-
not simply take an input stream (containing a bitonic
tree) and produce another output stream (containing
themodi8ed bitonic tree), because then it would have to
process the nodes in the same order as they are stored in
memory, but the adaptive bitonic merge processes them
in a random, data-dependent order.

Fortunately, the bitonic tree is a linked data structure
where all nodes are directly or indirectly linked to the
root (except for the extra node).6is allows us to change
the location of nodes inmemory during themerge algo-
rithm as long as the child pointers of their respective
parent nodes are updated (and the root and extra node
of the bitonic tree are kept at well-de8nedmemory loca-
tions).6is means that for each node that is modi8ed its
parent node has to be modi8ed also, in order to update
its child pointers.

Notice that  basically traverses the bitonic tree
down along a path, changing some of the nodes as nec-
essary.6e strategy is simple: simply output every node
visited along this path to a stream. Since the data lay-
out is 8xed and predetermined, the kernel can store the
index of the children with the node as it is being writ-
ten to the output stream. One child address remains
the same anyway, while the other is determined when
the kernel is still executing for the current node. Fig-
ure  demonstrates the operation of the stream pro-
gram using the described stream output technique.

Complexity 

A simple implementation on the GPU would need 
O(log n) phases (or “passes” in GPU parlance) in 
total for adaptive bitonic sorting, which amounts to 
O(log n) operations in total. 

6is is already very fast in practice. However, the 
optimal complexity of O(logn) passes can be achieved 
exactly as described in the original work [], that is, 
phase i of a stage k can be executed immediately a:er 
phase i+  of stage k−  has 8nished.6erefore, the exe- 
cution of a new stage can start at every other step of the 
algorithm. 

6e only di7erence from the simple implementation 
is that kernels now must write to parts of the output 
stream, because other parts are still in use. 

GPU-Specific Details 

For the input and output streams, it is best to apply the 
ping-pong technique commonly used in GPU program- 
ming: allocate two such streams and alternatingly use 
one of them as input and the other one as output stream. 

Preconditioning the Input 

For merge-based sorting on a PRAM architecture (and 
assuming p < n), it is a common technique to sort 
locally, in a 8rst step, p blocks of n/p values, that is, each 
processor sorts n/p values using a standard sequential 
algorithm. 

6e same technique can be applied here by imple- 
menting such a local sort as a kernel program. However, 
since there is no randomwrite access to non-temporary 
memory from a kernel, the number of values that can be 
sorted locally by a kernel is restricted by the number of 
temporary registers. 

On recent GPUs, the maximum output data size of 
a kernel is  ×  bytes. Since usually the input consists 
of key/pointer pairs, the method starts with a local sort 
of -key/pointer pairs per kernel. For such small num- 
bers of keys, an algorithm with asymptotic complexity 
of O(n) performs faster than asymptotically optimal 
algorithms. 

A:er the local sort, a further stream operation 
converts the resulting sorted subsequences of length 
 pairwise to bitonic trees, each containing  nodes. 
6erea:er, the GPU-ABiSort approach can be applied 
as described above, starting with j = . 
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 A Adaptive Bitonic Sorting
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Adaptive Bitonic Sorting. Fig.  To execute several instances of the adaptive La/Ua construction algorithm in parallel,
where each instance operates on a bitonic tree of  nodes, three phases are required. This figure illustrates the operation
of these three phases. On the left, the node pointers contained in the input stream are shown as well as the comparisons
performed by the kernel program. On the right, the node pointers written to the output stream are shown as well as the
modifications of the child pointers and node values performed by the kernel program according to 

The Last Stage of EachMerge

Adaptive bitonic merging, being a recursive procedure,
eventually merges small subsequences, for instance of
length . For such small subsequences it is better to use
a (nonadaptive) bitonic merge implementation that can
be executed in a single pass of the whole stream.

Timings

6e following experiments were done on arrays consist-
ing of key/pointer pairs, where the key is a uniformly
distributed random -bit 9oating point value and the
pointer a -byte address. Since one can assume (without
loss of generality) that all pointers in the given array are

unique, these can be used as secondary sort keys for the 
adaptive bitonic merge. 

6e experiments described in the following com- 
pare the implementation ofGPU-ABiSort of [, ] with 
sorting on theCPUusing theC++ STL sort function (an 
optimized quicksort implementation) aswell as with the 
(nonadaptive) bitonic sorting network implementation 
on the GPU by Govindaraju et al., called GPUSort []. 

Contrary to the CPU STL sort, the timings of GPU- 
ABiSort do not depend very much on the data to be 
sorted, because the total number of comparisons per- 
formed by the adaptive bitonic sorting is not data- 
dependent. 
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Adaptive Bitonic Sorting. Fig.  Timings on a GeForce  system. (There are two curves for the CPU sort, so as to
visualize that its running time is somewhat data-dependent)

Table  shows the results of timings performed on
a PCI Express bus PC system with an AMD Athlon-
 + CPU and an NVIDIA GeForce  GTX
GPU with  MB memory. Obviously, the speedup
of GPU-ABiSort compared to CPU sorting is .–.
for n ≥ . Furthermore, up to the maximum tested
sequence length n =  (= ,, ), GPU-ABiSort is
up to . times faster than GPUSort, and this speedup is
increasing with the sequence length n, as expected.

6e timings of the GPU approaches assume that the
input data is already stored in GPU memory. When
embedding the GPU-based sorting into an otherwise
purely CPU-based application, the input data has to be
transferred from CPU to GPUmemory, and a:erwards
the output data has to be transferred back to CPUmem-
ory. However, the overhead of this transfer is usually
negligible compared to the achieved sorting speedup:
according to measurements by [], the transfer of one
million key/pointer pairs from CPU to GPU and back
takes in total roughly ms on a PCI Express bus PC.

Conclusion

Adaptive bitonic sorting is not only appealing from a
theoretical point of view, but also from a practical one.
Unlike other parallel sorting algorithms that exhibit
optimal asymptotic complexity too, adaptive bitonic
sorting o7ers low hidden constants in its asymptotic
complexity and can be implemented on parallel archi-
tectures by a reasonably experienced programmer. 6e
practical implementation of it on a GPU outperforms
the implementation of simple bitonic sorting on the

same GPU by a factor ., and it is a factor  faster than 
a standard CPU sorting implementation (STL). 

Related Entries 

!AKS Network 
!Bitonic Sort 
!Lock-Free Algorithms 
!Scalability 
!Speedup 

Bibliographic Notes and Further 

Reading 

As mentioned in the introduction, this line of research 
began with the seminal work of Batcher [] in the 
late s, who described parallel sorting as a network. 
Research of parallel sorting algorithms was reinvigo- 
rated in the s, where a number of theoretical ques- 
tions have been settled [, , , , , ]. 

Another wave of research on parallel sorting ensued 
from the advent of a7ordable, massively parallel archi- 
tectures, namely, GPUs, which are, more precisely, 
streaming architectures. 6is spurred the development 
of a number of practical implementations [, –, , 
, ]. 
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